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Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy

Received 4 January 2008, in final form 21 February 2008
Published 19 March 2008
Online at stacks.iop.org/JPhysCM/20/145218

Abstract
We study the superconducting correlations induced in graphene when it is placed between two
superconductors, focusing in particular on the supercurrents supported by the 2D system. For
this purpose we make use of a formalism placing the emphasis on the many-body aspects of the
problem, with the aim of investigating the dependence of the critical currents on relevant
variables like the distance L between the superconducting contacts, the temperature, and the
doping level. Thus we show that, despite the vanishing density of states at the Fermi level in
undoped graphene, supercurrents may exist at zero temperature with a natural 1/L3 dependence
at large L. When temperature effects are taken into account, the supercurrents are further
suppressed beyond the thermal length LT (∼vF/kBT , in terms of the Fermi velocity vF of
graphene), entering a regime where the decay is given by a 1/L5 dependence. On the other
hand, the supercurrents can be enhanced upon doping, as the Fermi level is shifted by a
chemical potential μ from the charge neutrality point. This introduces a new crossover length
L∗ ∼ vF/μ, at which the effects of the finite charge density start being felt, marking the
transition from the short distance 1/L3 behavior to a softer 1/L2 decay of the supercurrents at
large L. It turns out that the decay of the critical currents is given in general by a power-law
behavior, which can be seen as a consequence of the perfect scaling of the Dirac theory applied
to the low-energy description of graphene.

1. Introduction

Since the discovery of single atomic layers of carbon in
2004 [1], this new two-dimensional (2D) material (so-called
graphene) has attracted a lot of attention [2]. From the
experimental point of view, the 2D carbon sheets have shown
a number of remarkable electronic properties. Thus, there
has been evidence that graphene may have a finite lower
bound (4e2/h) in the conductivity at the charge neutrality
point [3, 4]. Furthermore, an anomalous integer quantum Hall
effect has been measured in the 2D system, with plateaus at
odd-integer values of the quantum of conductance [3, 4]. The
absence of weak localization effects [5] has also pointed to the
unconventional effects that impurities and disorder in general
may produce in the graphene sheet.

Most of the remarkable transport properties of graphene
have to do with its particular band structure at low energies.
The undoped system has a finite number of Fermi points,
placed at the corners of the hexagonal Brillouin zone. Only

two such points can be taken as independent, with quasiparticle
excitations which have conical dispersion above and below the
Fermi level [6]. This explains how the low-energy electronic
states of graphene may be accommodated into two two-
component spinor fields, governed by a Dirac Hamiltonian,
which leads to a dispersion relation ε(k) = ±vF|k|. The
electronic system displays hence a relativistic-like invariance
at low energies, which is at the origin of the finite lower
bound in the conductivity [7–10], the anomalous integer
Hall effect [7, 11, 12], and the absence of backscattering
in the presence of long-range scatterers [13]. Other exotic
effects relying on the Dirac theory have been proposed,
like the selective transmission of electrons through an n–p
junction [14] or the specular Andreev reflection at a graphene–
superconductor interface [15].

Recently, the properties of graphene have been also in-
vestigated when the material is placed between superconduct-
ing contacts. Thus, in the experiment reported in [16], it has
been possible to measure supercurrents in graphene by attach-
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ing wide superconducting electrodes with a spatial separation
of ≈0.5 μm. In another experiment, reported in [17], a quite
different geometry has been investigated by placing thin elec-
trodes across a large 2D sample, with a minimum separation
between the tips of ≈2.5 μm. In this case, the evidence of the
superconducting correlations in graphene has been obtained in
the form of Andreev reflection peaks in the I –V curves, as well
as in the abrupt drop of the resistance at a temperature of ≈1 K,
below the critical temperature (≈4 K) of the superconducting
electrodes. Moreover, supercurrents have also been measured
in the experiment reported in [18], where their development
may have been favored by the large aspect ratio (∼10) between
the width of the junction and the lead separation (of the order
of a few hundred nanometers).

It is therefore pertinent to study the way in which the
superconducting correlations are induced in graphene when
it is placed between two superconductors, and how such
correlations may depend on the geometry of the experimental
setup. In this paper we are going to address this issue, focusing
in particular on the supercurrents supported by the graphene
sheet. We will be using a formalism placing the emphasis on
the many-body aspects of the problem. This will allow us to
clarify a number of questions, regarding the dependence of the
critical currents on relevant variables like the distance between
the superconducting contacts, the temperature, and the doping
level of the graphene sample. In this respect, our approach can
be seen as complementary to that of [19], where the Josephson
effect has been studied in terms of Andreev reflection at
superconducting contacts, concentrating on junctions with
relatively short distance between the electrodes. We will be
dealing with a framework where the tunneling and propagation
of the Cooper pairs in graphene play the central role, placing
in principle no restriction on the separation that may exist
between superconducting contacts.

The content of this paper is organized as follows. We
will set up in section 2 the formalism needed to describe the
tunneling and propagation of Cooper pairs in graphene. This
will be applied to the computation of the critical currents in
section 3, where we will also discuss the different regimes
depending on the interplay between the temperature and the
distance between superconducting contacts. Section 4 will
be devoted to extending our analysis to the case of finite
doping, showing the enhancement experienced then by the
supercurrents. Finally, we will summarize our results and draw
our conclusions in section 5.

2. Model of graphene Josephson junction

Our purpose is to build a model that incorporates the low-
energy properties of electron quasiparticles in graphene as
well as the tunneling of electrons from graphene to the
superconducting electrodes and vice versa. We take into
account in particular that, below an energy scale of ∼1 eV,
the electron dispersion relation has a conical shape, with
a dependence of the energy ε on momentum k given by
ε(k) ≈ ±vF|k| [6]. We have to bear in mind that the 2D
system has actually two independent Fermi points supporting
such a conical dispersion, at opposite corners K ,−K of the

hexagonal Brillouin zone. The dynamics of the quasiparticles
in graphene can be therefore described in terms of a couple
of two-component Dirac spinors �(a), a = 1, 2, with a
Hamiltonian [20, 21]

H0 = vF

∫
d2r �(a)†

σ (r) σ (a) · ∂ �(a)
σ (r) (1)

where {σ (a)} are two different suitable sets of Pauli
matrices [11] (we use units such that h̄ = 1). In the above
expression, the label of the spinor components is omitted for
simplicity, and a sum is taken implicitly over the spin index
σ as well as over the index a running over the two different
low-energy valleys of the dispersion.

The above Hamiltonian has to be then complemented
with a term accounting for the tunneling of electrons from
the graphene side to the superconducting electrodes and
vice versa. In this respect, we are going to assume that
the tunneling takes place with equal amplitude for the two
sublattices of the graphene honeycomb lattice. This kind of
junction may be realized in cases where the contacts between
graphene and the superconductors preserve the structure of
the graphene lattice. From a technical point of view, such
condition implies that the different spinor components and the
different low-energy valleys couple with equal amplitude to
the superconductors. By denoting the electron fields in the
respective superconducting electrodes by �S1 and �S2, we
may write the tunneling Hamiltonian for contacts along the
coordinates x1 = 0 and x2 = L as

Ht =
∑
j=1,2

t
∫ W

0
dy �(a)†

σ (x j , y)�S j,σ (x j , y) + h.c. (2)

where the parameter t represents the tunneling amplitude. We
stress at this point that, while the contacts have a width given
by W in equation (2), the extension of the graphene layer along
the transverse y direction is not constrained by this parameter
in our model. Thus, our description will apply in general to
2D graphene samples, with dimensions in both the transverse
and the longitudinal direction much larger than the contacts
introduced by the superconducting electrodes.

The properties of the superconducting electrodes also have
to be incorporated in the model of the Josephson junction. For
the description of the supercurrents, it will be enough to specify
the normal density of states ρ and the order parameter � in the
superconducting state. We recall that a supercurrent arises in
general from a gradient in the phase of the order parameter
in a superconductor. In the case of a Josephson junction, the
supercurrent is produced by a mismatch in the phases χ1 and
χ2 of the respective order parameters in the superconducting
electrodes. The Josephson current Is is actually given by
the derivative of the free energy with respect to the variable
χ = χ1 − χ2, and it can be therefore expressed as

Is = 2e
∂

∂χ
kBT log

(
Tr e−H/kBT

)
(3)

where T is the temperature and H stands for the full
Hamiltonian of the model.
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Figure 1. Schematic representation of the propagation of Cooper
pairs in graphene between two superconductors (SCs).

In order to compute the Josephson current from
equation (3), we will resort to a perturbative expansion in
the tunneling amplitude t . The structure of the dominant
contributions may however be very different depending on the
actual geometry of the Josephson junction [22]. In cases where
the distance L between the contacts is much smaller than the
superconducting coherence length ξ , the supercurrents are built
from processes with independent tunneling and uncorrelated
propagation in graphene of the electrons of a Cooper pair. On
the other hand, when L is much larger than ξ , the behavior
is governed by the fast tunneling and subsequent propagation
of the Cooper pair in graphene, as shown schematically in
figure 1. This situation corresponds to the case where the time
of propagation between the contacts is much larger than 1/|�|.
Under the assumption of a large |�|, the relevant properties of
the superconductors may be encoded in the statistical average

〈�S j,σ (x j , y; −iτ1)�S j,−σ (x j , y; −iτ2)〉 ≈ eiχ j ρ δ(τ1 − τ2)

(4)
where the operators are ordered with respect to imaginary time
τ .

From inspection of the expansion of the rhs in equation (3)
in powers of the tunneling amplitude, we observe that the
first nonvanishing contribution to Is appears to fourth order
in t , from a statistical average of operators participating of
the condensates of the two superconductors. The expression
of the maximum supercurrent Ic (critical current) is worked
out at this perturbative level in the appendix, focusing on the
regime corresponding to L � ξ . After factoring out the
relative tunnel conductances at the contacts (given in each case
by the dimensionless quantity ρt2W/vF), we end up with an
expression for the behavior of the critical current intrinsic to
the 2D graphene layer:

I (2D)
c (T ) ≈ 2ev2

F

∫ W

0
dy1

∫ W

0
dy2

×
∫ 1/kB T

0
dτ 〈�(a)†

↑ (0, y1; 0)�
(−a)†
↓ (0, y1; 0)

× �
(b)
↑ (L, y2; −iτ )�

(−b)
↓ (L, y2; −iτ )〉. (5)

We observe from (5) that the propagator of the Cooper pairs
evaluated over a distance L plays the central role in the
determination of the supercurrents. We will study in what
follows the behavior of this propagator depending on the
distance L, the temperature, and the doping level.

3. Supercurrents at finite temperature

We analyze first the behavior of the supercurrents in graphene
when the system is undoped, but is placed at a nonvanishing
temperature T . The expectation values in the above formulas
have to be understood then as statistical averages at this finite
temperature. The building block for all the calculations is the
electron propagator

G(a)(r, t) = −i〈T�(a)
σ (0, 0)�(a)†

σ (r, t)〉. (6)

This is given in graphene by the propagator for Dirac fermions,
corresponding to the Hamiltonian (1). In the many-body theory
at temperature T 
= 0, the imaginary part of this object has
a specific term to account for the thermal effects. The full
expression of the Dirac propagator becomes in momentum
space [23]

G(a)(p, ωp) = ωp + σ (a) · p

ω2
p − p2 + iε

+ i2π(ωp + σ (a) · p)δ(−ω2
p + p2)

1

1 + e|ωp|/kB T
. (7)

The Cooper-pair propagator in (5) can be computed from
the convolution of two Dirac propagators, bearing in mind that
they correspond to fields at opposite valleys of the graphene
dispersion. In doing this operation, we will also have to
be consistent with our assumption that the tunneling at the
superconducting contacts is the same for the two sublattices of
the graphene lattice. This means that, when taking the average
for the Cooper-pair propagator, we will also take a trace in
spinor space over the states of the Cooper pairs in sublattice
A, given by �

(a)
A,↑(k+ q)�

(−a)
A,↓ (−q), and in sublattice B , given

by �
(a)

B,↑(k + q)�
(−a)

B,↓ (−q). The Cooper-pair propagator thus
defined in momentum space, D(k, ω), can be expressed as

D(k, ωk) = i Tr
∫

dωq

2π

×
∫

d2q

(2π)2
G(a)(q + k, ωq + ωk)G(−a)(−q,−ωq). (8)

A nice feature of the diagrammatics of the many-body
theory at T 
= 0 is that the terms carrying the dependence
on temperature do not need to be regularized by means of a
high-energy cutoff. The contributions at T = 0, however,
remain finite only when the integrals over the momenta are
suitably cut off. In the present model, it is convenient to
choose a method of regularization of the integrals preserving
the relativistic-like invariance of the theory. For this purpose,
we will adopt an analytic continuation in the number of
space–time dimensions [24], that is, carrying out first the
integrals at general dimension D, and then taking the limit
D → 3. To implement this procedure, we first collect the
components of the momentum and the frequency to form 3D
vectors, q ≡ (vFq, ωq ), k ≡ (vFk, ωk). Next, we may
rotate all the 3D vectors to Euclidean space by introducing
imaginary frequencies, ωq = −iωq . One can easily see that
the expression of the propagator (8) at general dimension D
becomes

D(k, iωk)|T =0 =
∫ 1

0
dx

∫
dDq

(2π)D

2q2 − 2k2x(1 − x)(
q2 + k2x(1 − x)

)2

3
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=
(

1

4π3/2
�

(
1 − D

2

)
− 1

2π3/2
�

(
2 − D

2

))

×
∫ 1

0
dx

√
k2x(1 − x). (9)

In the last passage we have made use of standard formulas in
dimensional regularization. Quite remarkably, the result turns
out to be finite in the limit D → 3. After reverting the rotation
back to real frequency, we finally get

D(k, ω)|T =0 = − 1

8v2
F

√
v2

Fk2 − ω2. (10)

The part of the Cooper-pair propagator depending on
temperature can be computed by using the second term in (7)
to make the convolution (8). For our purposes, we can
concentrate on the calculation of the Cooper-pair propagator at
zero frequency. By adding the result (10) to the temperature-
dependent contribution, we get

D(k, 0) = − 1

8vF
|k| − log(2)

πv2
F

kBT

+ 1

2πvF
|k|

∫ 1

0
dx

1√
1 − x2

1

1 + exvF |k|/2kBT
. (11)

From the results (10) and (11), we can already extract
a number of conclusions regarding the behavior of the
supercurrents in long graphene Josephson junctions. From
equation (5), we can express the critical current for L � W
as

I (2D)
c (T ) ≈ 2ev2

FW 2
∫ ∞

0

dk

2π
|k| J0(|k|L)D(k, 0)e−|k|/kc .

(12)
A short distance cutoff kc has been introduced to regularize
the integral over the momentum. This is actually justified
on physical grounds, since the description of graphene as
a continuum in terms of the Dirac theory makes sense at
distances above the nanometer scale. A sensible choice
corresponds to vFkc ∼ 1 eV. We will see that, at distances such
that L � k−1

c , the behavior of the critical current is in general
not sensitive to the actual value of the cutoff.

At T = 0, the dependence of the critical current on
L can be obtained from the Cooper-pair propagator (10).
Actually, we can derive an analytical expression for I (2D)

c (0)

by computing the integral in (12):

I (2D)
c (0) ∼ −evFW 2

∫ ∞

0
dk |k|2 J0(|k|L)e−|k|/kc (13)

= evFW 2 k3
c (k

2
c L2 − 2)√

(k2
c L2 + 1)5

. (14)

From this result we check that, as expected, the behavior of the
critical current is not affected by the cutoff kc in the limit of
large L. In this regime we find

I (2D)
c (0) ∼ evFW 2 1

L3
. (15)

The strong power-law decay shown by (15) can be understood
actually as a reflection of the linear dependence on momentum
of the quasiparticle energy, which dictates in turn the behavior

Figure 2. Logarithmic plot of the critical current I (2D)
c (in units of

10−2evFkc ≈ 1.2 μA) as a function of the distance L , taking
W = 102/kc (=50 nm). The three curves correspond, from top to
bottom, to different values of the temperature T = 2, 4, and 8 K.

of the Cooper-pair propagator (10) [25]. We reach anyhow
the interesting conclusion that, while graphene has a vanishing
density of states at the Dirac point, it may still support a
nonvanishing supercurrent when the Fermi level is at this
charge neutrality point.

The inspection of the full propagator (11) also reveals
that the scaling is drastically modified when kBT � vF|k|.
Actually, we can distinguish between a high-temperature and
a low-temperature regime of the Cooper-pair propagator, with
quite different behaviors:

D(k, 0) ≈ − 1

8vF
|k| if kBT � vF|k| (16)

≈ − log(2)

πv2
F

kBT − 1

16π

|k|2
kBT

if kBT � vF|k|. (17)

The existence of this crossover in the momentum gives rise to
an abrupt decay of the supercurrent beyond the thermal length
LT = vF/kBT . This is illustrated in figure 2, where the critical
current I (2D)

c (T ) is represented as a function of the distance L
at different temperatures. We observe for instance that, for a
temperature of the order of T ∼ 1 K, the scale of the crossover
in L is of the order of a few microns, in agreement with the
expression of the thermal length.

From a physical point of view, it becomes clear that
the Cooper pairs do not feel the thermal effects during their
propagation when L is shorter than the scale given by LT ,
while they are increasingly disrupted at distances larger than
the thermal length. At short distances such that L � vF/kBT ,
the decay of the critical current represented in figure 2 follows
a 1/L3 power-law, in agreement with the above analysis at
T = 0. However, beyond the crossover clearly identified in the
three curves, we see that a different power-law behavior opens
up at long distance L � vF/kBT . This regime can be analyzed
by considering that, when T is very large, the second term in
the approximation (17) dictates the long distance decay of the
critical current. In this case we can compute again analytically
the integral in (12):

I (2D)
c (T ) ∼ −ev2

FW 2 1

kBT

∫ ∞

0
dk |k|3 J0(|k|L)e−|k|/kc (18)

= evFW 2 vF

kBT

k4
c (9k2

c L2 − 6)√
(k2

c L2 + 1)7
. (19)
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Figure 3. Plot of the critical current I (2D)
c (T ) (in units of 10−2evFkc ≈ 1.2 μA) as a function of the temperature, for W = 102/kc (=50 nm)

and a spatial separation between superconducting contacts L = 0.5 μm (a), 1.5 μm (b), and 2.5 μm (c).

The leading contribution to the critical current becomes then
for L � vF/kBT

I (2D)
c (T ) ∼ evFW 2 vF

kckBT

1

L5
. (20)

The existence of this stronger power-law decay is manifest in
the results of the numerical computation of the critical current
represented in figure 2, as it can be checked that the rightmost
part of the lower curves in the plot corresponds with great
accuracy to a power-law behavior with the exponent given by
equation (20).

In order to establish a comparison with experimental
results, the relevant behavior is given by the critical current
represented as a function of the temperature at fixed length
L. The existence of a thermal length has a reflection here
in the form of a crossover temperature T ∗, which marks the
strong decay of the critical current for T > T ∗. We have
plotted in figure 3 the critical current I (2D)

c (T ), computed from
equation (12), at different values of L between 0.5 μm and
2.5 μm. The shapes of the curves in the figure are quite
similar, and it can be checked that they can be collapsed into
a single universal curve after rescaling the temperature by
T ∗ ∝ vF/kB L, as shown in figure 4. This is consistent with
the expression of the critical current in equation (12), where
it is seen that the effect of a variation of the length L on
I (2D)
c (T )/I (2D)

c (0) can be compensated by a suitable change in
the scale of T , in the regime where the critical current is not
sensitive to the precise value of kc.

We observe that the behavior of the critical current is in
all cases quite stable for T � T ∗ and that there is even an
upturn before the abrupt drop at the crossover temperature.
These features have also been found in the theoretical
investigation of the supercurrents in one-dimensional (1D)
electron systems [22] and in carbon nanotubes [26]. The shape
of the critical currents obtained there is qualitatively similar to
that of the curves in figure 3. A major difference is however
that the decay of the supercurrents in the carbon nanotubes is
given by a 1/L dependence in the ballistic regime, instead of
the much stronger power-law decay (15) in graphene.

It is worth mentioning at this point the experiment
reported in [17], in which the properties of a graphene
Josephson junction have been measured in the regime of
large distance between superconducting electrodes. In the

Figure 4. Combined plot of I (2D)
c (T )/I (2D)

c (0) represented as a
function of the scaled variable T/T ∗ (with T ∗ = vF/2L), where the
collapse of the three curves corresponding to values of the distance
L = 0.5 μm (full line), 1.5 μm (dotted line), and 2.5 μm (dashed
line) is seen.

experimental setup described there, the minimum distance
between superconducting contacts can be estimated as ≈
2.5 μm. While no supercurrent was observed below the
critical temperature Tc of the electrodes (≈4 K), a signature
of the proximity effect was obtained in the measurements of
the resistance as a function of temperature, in the form of a
sharp decrease at T ≈ 1 K. Quite remarkably, this value of
T is in good correspondence with the crossover temperature
that we find in our model for a distance L = 2.5 μm, as
can be seen from figure 3(c). It is therefore likely that the
sharp decrease measured in the resistance has its origin in
the same suppression of the thermal effects as enhances the
supercurrents at T < T ∗. We also notice that the prediction
from our model is that the critical currents for such a large
value of L should be well below the scale of 1 nA. This may
explain the failure to establish a supercurrent in the experiment
of [17], and it may also anticipate better perspectives in
experiments with suitably short graphene junctions.

4. Supercurrents at finite doping

We have seen that the origin of the relative smallness
of the critical currents in undoped graphene lies in the
vanishing density of states at the Dirac point. Therefore, a
straightforward way to enhance the supercurrents may simply
consist in shifting the Fermi level away from the charge
neutrality point, as shown in figure 5. In practice, this can

5
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Figure 5. Schematic representation of the two independent Dirac
valleys at the corners of the hexagonal Brillouin zone, showing the
regions of occupied (dark) and unoccupied (white) energy levels in
doped graphene.

(This figure is in colour only in the electronic version)

be achieved by doping the graphene sheet. In our theoretical
framework, we will assume that this effect can be accounted
for by means of a finite chemical potential μ. Thus, the
Hamiltonian for the graphene part of the junction will now read

H0 =
∫

d2r �(a)†
σ (r)

(
vFσ

(a) · ∂ − μ
)
�(a)

σ (r). (21)

Working at μ 
= 0 leads to significant modifications
in the propagator of the Dirac fermions and in the Cooper-
pair propagator. The Dirac propagator corresponding to the
Hamiltonian (21) turns out to be (for μ > 0) [27]

G(a)(k, ω) = (ω + vFσ
(a) · k)

[
1

ω2 − v2
Fk2 + iε

+ iπ
δ(ω − vF|k|)

vF|k| θ(μ − vF|k|)
]
. (22)

As shown in the appendix, the representation (22) is
nothing but a compact form of expressing the propagation of
quasiparticles with vF|k| > μ and quasiholes with ±vF|k| <

μ, in the particular case of conical dispersion.
The propagator (22) is very convenient to carry out

calculations in the many-body theory and, in particular, it
allows us to compute the dependence on μ of the Cooper-pair
propagator as a correction to the expression (10) at μ = 0.
In this procedure, we observe that the second term in the rhs
of (22) does not introduce any integrals requiring regularization
in the diagrammatics of the Dirac theory. By computing
then the Cooper-pair propagator according to equation (8), we
obtain [25]

D(k, 0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1

2πv2
F

μ if vF|k| < 2μ

− 1

8vF
|k| + 1

4πvF
|k| arcsin

(
2μ

vF|k|
)

− 1

2πv2
F

μ

if vF|k| > 2μ.

(23)
At large values of vF|k| � μ, we recover from (23) the

linear dependence on the momentum that is characteristic of
the Cooper-pair propagator in the undoped system. However,
the chemical potential introduces a clear deviation from this
behavior at small |k|, which has significant consequences in the
decay of the supercurrent at long distances. This is illustrated
in figure 6, where the existence in general of a crossover length
scale L∗ mediating the transition towards a softer power-law
decay can be appreciated.

According to (23), we can express the critical current
I (2D)
c (0) at finite chemical potential in the form

I (2D)
c (0) = I (2D)

c1 (0) + I (2D)
c2 (0) (24)

with

I (2D)
c1 (0) = − 1

π
eW 2μ

∫ ∞

0

dk

2π
|k| J0(|k|L)e−|k|/kc (25)

I (2D)
c2 (0) = − 1

2π
evFW 2

×
∫ ∞

2μ/vF

dk

2π
|k|2 arccos

(
2μ

vF|k|
)

J0(|k|L)e−|k|/kc . (26)

The first contribution to (24) is not relevant, since we have

I (2D)

c1 (0) = − 1

π
eW 2μ

k2
c√

(k2
c L2 + 1)3

(27)

which is smaller than the estimate (15) at μ = 0 by a factor
μ/vFkc. The second contribution may however change the
behavior of the critical current at large L, as the integrand is
not analytic at |k| = 2μ/vF. The expression for I (2D)

c2 (0) is
actually finite in the limit kc → ∞, and we obtain

I (2D)
c2 (0) ∼ −evFW 2 μ3

v3
F

×
∫ ∞

1
dx x2 arccos

(
1

x

)
J0((2μL/vF)x) (28)

∼ eW 2μ
1

L2
for μL/vF � 1. (29)

We have to stress anyhow that I (2D)

c2 (0) has oscillations
as a function of L, arising from the behavior of the Bessel
function J0. The power-law decay (29) applies then to the
envelope of the maxima of the critical current, as illustrated
in figure 6(a). There the crossover from the 1/L3 behavior
to the oscillatory regime with softer power-law decay can be
appreciated. From the numerical results represented in the
figure, it can be checked that the 1/L2 behavior is followed
with great accuracy at large values of L (compared to vF/μ).

From a practical point of view, the most important result
that we obtain is the significant enhancement of the critical
currents at moderate values of the chemical potential. This is
clearly observed in the plots of figure 6, where the crossover to
the 1/L2 decay is always found at a length scale consistent with
the theoretical estimate L∗ ∼ vF/μ. For a chemical potential
μ ≈ 10 meV, for instance, this scale is ≈50 nm. The critical
currents can be then enhanced to values above the nanoampere
scale for spatial separation between superconducting contacts
L � 500 nm (assuming thin electrodes as in our case with
W ∼ 50 nm). This should open good perspectives to establish
supercurrents in graphene Josephson junctions by suitable
doping of the samples.

5. Conclusion

In this paper we have adopted a framework suited to address
the many-body properties of graphene Josephson junctions.
We have described the development of the supercurrents
through the tunneling and propagation of Cooper pairs in the
graphene part of the junction, with the aim of investigating
the dependence of the critical currents on relevant variables
like the distance between the superconducting contacts, the
temperature, and the doping level. We have been able
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Figure 6. Plot of the zero-temperature critical current I (2D)
c (0) as a function of the distance L , for W = 102/kc (=50 nm) and three different

values of the chemical potential μ = 1 meV (a), 5 meV (b), and 10 meV (c). The dashed straight lines in figure 3(a) are drawn as a reference
to the power-law dependences 1/L3 and 1/L2.

then to characterize different regimes in the behavior of
the supercurrents, depending on the relation between these
variables.

The supercurrents have a natural tendency to decay in the
graphene part of the Josephson junction, following in general a
power-law behavior with respect to the distance L between the
superconducting contacts. Such a power-law decay is particu-
larly strong in undoped graphene, given the vanishing density
of states at the charge neutrality point. We have shown that the
critical currents display then at zero temperature a 1/L3 depen-
dence on the distance L. When temperature effects are taken
into account, there is always a finite thermal length LT (of the
order of ∼vF/kBT ) beyond which the supercurrents are further
suppressed, due to the disruption of the Cooper pairs by many-
body effects. When this takes place, the supercurrents enter a
regime where the natural decay is given by a 1/L5 dependence.

On the other hand, many-body effects can also be used
to our benefit to enhance the critical currents, in this case
by shifting the Fermi level away from the charge neutrality
point. This can be achieved in our framework by means of
a chemical potential μ 
= 0. Inducing in this way a finite
density of states at the Fermi level, we have seen that the
critical currents are enhanced beyond a new crossover length
L∗ ∼ vF/μ. This is actually the scale at which the effects of
the finite charge density start being felt, marking the transition
from the previously discussed 1/L3 behavior to a softer 1/L2

decay of the supercurrents at long distances.
At this point, it is interesting to note that the 1/L3 decay at

zero temperature in undoped graphene is similar to the behav-
ior found in the investigation of mesoscopic junctions made of
a diffusive metal [28]. In this case, the product of the critical
current times the normal resistance of the metal is proportional
to the Thouless energy, which depends on length L as 1/L2.
This implies consequently a 1/L3 decay of the critical current,
which we have seen is characteristic of graphene under condi-
tions of ballistic transport. The reminiscence of some of the
properties of clean graphene with respect to the behavior of a
disordered normal metal has been remarked in several other in-
stances [9, 19]. We have to point out, however, that this resem-
blance does not go farther in our case, regarding other regimes
of the graphene Josephson junction. In particular, we have seen
that the critical current does not follow an exponential decay at

distances larger than the thermal length. The decay of the crit-
ical current is always given in graphene by a power law, which
can be seen as a consequence of the perfect scaling of the low-
energy Dirac theory.

We also have to stress that our results refer to Josephson
junctions with graphene layers which have large dimensions
in both the longitudinal direction along the junction and
the transverse direction. This condition comes from our
consideration of a system which is truly 2D, where in particular
the size in the direction transverse to the junction is not
constrained by the width of the superconducting contacts. In
this regard, the situation is quite different to the case of long
but narrow junctions, where the small transverse dimension
may lead to the quantization of the transverse component of the
momentum. In such circumstances, the behavior of the system
may be rather dictated by a 1D propagation of the Cooper pairs,
which is known to lead to a 1/L decay of the supercurrents in
the ballistic regime [22, 26].

Anyhow, the great advantage of the graphene Josephson
junctions is that the interaction effects have little significance
at the temperatures required to measure the supercurrents.
In the long 1D junctions made of carbon nanotubes, for
instance, it is known that the Coulomb interaction may induce a
strong power-law suppression of the density of states, with the
consequent reflection in the decay of the supercurrent [26]. In
2D graphene, however, the electron system has the tendency
to become less correlated at low energies, with a strong
renormalization of the Coulomb interaction that makes it
practically irrelevant at the temperature scale of 1 K [24, 29].

In conclusion, our results highlight the role of the different
parameters conforming the geometry of graphene Josephson
junctions in the determination of the critical currents. We have
seen that the interplay with variables like the temperature and
the doping level is what establishes the different regimes of
a junction. This information may be useful in the design of
experiments, for the purpose of enhancing the magnitude of
the critical currents in real devices.
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Appendix

A.1. Lowest-order contribution to the critical current

The Josephson current Is can be computed in a perturbative
framework by expanding the free energy in equation (3) in
powers of the tunneling amplitude t . The first nonvanishing
contribution is found to fourth order in this expansion, as the
statistical average of operators leads then to the appearance of
the condensates of the two superconductors in the junction. We
have actually

Is ≈ 2e
∂

∂χ
kBT t4

4∏
i=1

∫ 1/kB T

0
dτi

×
∫ W

0
dyi 〈�S1,↑(0, y1; −iτ1)�S1,↓(0, y2; −iτ2)〉

× 〈�(a)†
↑ (0, y1; −iτ1)�

(−a)†
↓ (0, y2; −iτ2)

× �
(b)

↑ (L, y3; −iτ3)�
(−b)

↓ (L, y4; −iτ4)〉
× 〈�†

S2,↑(L, y3; −iτ3)�
†
S2,↓(L, y4; −iτ4)〉. (30)

We can apply to equation (30) the approximations
pertinent to the regime we want to study in the paper. Focusing
on the case of a large junction where the distance L is much
larger than the superconducting coherence length ξ , the use of
equation (4) and translational invariance in the variable τ leads
to a maximum supercurrent Ic (critical current)

Ic(T ) ≈ 2eρ2t4W 2
2∏

i=1

∫ W

0
dyi

×
∫ 1/kB T

0
dτ 〈�(a)†

↑ (0, y1; 0)�
(−a)†
↓ (0, y1; 0)

× �
(b)
↑ (L, y2; −iτ )�

(−b)
↓ (L, y2; −iτ )〉. (31)

At this point, it becomes convenient to factor out the
relative tunnel conductances at the contacts, which are each
given by the dimensionless quantity ρt2W/vF. We concentrate
then on the behavior of the critical current intrinsic to the 2D
graphene system, represented by the expression

I (2D)
c (T ) ≈ 2ev2

F

∫ W

0
dy1

∫ W

0
dy2

×
∫ 1/kB T

0
dτ 〈�(a)†

↑ (0, y1; 0)�
(−a)†
↓ (0, y1; 0)

× �
(b)
↑ (L, y2; −iτ )�

(−b)
↓ (L, y2; −iτ )〉. (32)

This last equation highlights the connection between the
critical current and the propagator of the Cooper pairs, which
plays a central role in the discussion of sections 3 and 4 in the
paper.

A.2. Dirac propagator at μ 
= 0

In the many-body theory of Dirac fermions, it is usual to
write the Dirac propagator at finite charge density in the form

(assuming μ > 0)

G(a)(k, ω) = (ω + vFσ
(a) · k)

[
1

ω2 − v2
Fk2 + iε

+ iπ
δ(ω − vF|k|)

vF|k| θ(μ − vF|k|)
]
. (33)

If we specialize the expression (33) to modes such that the
eigenvalue ε(k) of the matrix vFσ

(a) · k is positive, we get

G(a)(k, ω)|ε(k)=vF|k| = 1

ω − vF|k|
− iπ

ω + vF|k|
2vF|k| δ(ω − vF|k|)

= 1

ω − vF|k| + iε
(34)

for vF|k| > μ, and

G(a)(k, ω)|ε(k)=vF|k| = 1

ω − vF|k|
+ iπ

ω + vF|k|
2vF|k| δ(ω − vF|k|)

= 1

ω − vF|k| − iε
(35)

for vF|k| < μ. We observe that, in either case, the expression
of G(a)(k, ω) agrees with the conventional propagation of
a fermion, with the correct ±iε prescription depending on
whether it corresponds to a quasiparticle or a quasihole
excitation.

On the other hand, we always have in the case of negative
eigenvalue ε(k)

G(a)(k, ω)|ε(k)=−vF|k| = 1

ω + vF|k|
− iπ

ω − vF|k|
2vF|k| δ(ω + vF|k|)

= 1

ω + vF|k| − iε
(36)

which is also in agreement with the expected propagation for a
quasihole in the valence band of graphene.
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